COURSE INTRODUCTION AND APPLICATION INFORMATION


Course Name
General Physics I
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
PHYS 100
Fall/Spring
2
2
3
6
Prerequisites
None
Course Language
English
Course Type
Elective
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives The main objective of this course is to introduce the fundamental concepts of classical mechanics and thermodynamics. The course begins with an introduction of space and time, straightline kinematics, motion in a plane, forces and static equilibrium and the experimental basis of Newton's laws. Introduces and applies the concepts of particle dynamics, universal gravitation, collisions and conservation laws, work and potential energy, vibrational motion, conservative forces, inertial forces and noninertial frames, central force motions, rigid bodies and rotational dynamics. At the last stage of the course, some applications of thermodynamics, kinetic theory and the ideal gas will be addressed. These topics include, but not limited to, temperature, ideal gases, van der Waals equation of state, blackbody radiation, heat flow and the first law of thermodynamics, MaxwellBoltzmann distribution, the concept of random walk and diffusion. The course will conclude with an introduction to Carnot engine, entropy and the second law of thermodynamics. Consequently, all engineering students will be able to model advanced dynamic systems such as electric machinery, grasp the essential physics for understanding the foundations of materials science, and easily comprehend the principles of operation of the solidstate and semiconductor electronic devices in their future studies.
Learning Outcomes The students who succeeded in this course;
  • Understand the significance of the essential concepts of momentum and the conservation of momentum,
  • Learn the solution strategies for the problems arising in rotational dynamics,
  • Get acquainted with the concepts of rigid bodies, torque and angular momentum,
  • Apply the conservation of angular momentum in order to deal with more advanced problems of rotational dynamics,
  • Grasp the fundamental concepts in the following areas: thermodynamics, the kinetic theory and the ideal gas, and the basic laws of thermodynamics.
  • Learn how to establish an experiement, collect, analyze and interpret data,
  • Improve their computational skills
  • Employ computer skills to visualize and analyze expermental data
Course Description Through lectures and labs we aim to introduces the following classical mechanics and thermodynamics topic: space and time; straight line kinematics; motion in a plane; forces and static equilibrium; particle dynamics with force and conservation of momentum; relative inertial frames and noninertial force; work, potential energy and conservation of energy; rigid bodies and rotational dynamics; vibrational motion; conservation of angular momentum; central force motions
Related Sustainable Development Goals

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
X
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Kinematics in One Dimension Chapter 1 and Chapter 2. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
2 Kinematics in Two Dimension; Vectors Chapter 3. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
3 Dynamics: Newton’s Laws of Motion Chapter 4. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, I0: 0136139221, ISBN13: 9780136139225SBN1
4 Applications of Newton’s Laws Chapter 5. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
5 Applications of Newton’s Laws Chapter 5. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
6 Gravitation Chapter 6. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
7 Work and Energy Chapter 7. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
8 Review of the First Half
9 Conservation of Energy Chapter 8. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
10 Linear Momentum and Collisions Chapter 9. Sections 111. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
11 Linear Momentum and Collisions Chapter 9. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
12 Rotational Motion Chapter 10. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
13 Angular Momentum Chapter 11. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
14 Ideal Gasses and Kinetic Theory Chapter 17 and 18. Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, 2008, AddisonWesley, ISBN10: 0136139221, ISBN13: 9780136139225
15 Review of the Semester
16 Final Exam
Course Notes/Textbooks Physics for Scientists and Engineers with Modern Physics and Mastering Physics, 4/E, Giancoli, ©2008, AddisonWesley, Published: 08/27/2008, ISBN10: 0136139221 | ISBN13: 9780136139225
Suggested Readings/Materials University Physics with Modern Physics with Mastering Physics™, 12/E, Young & Freedman©2008,  AddisonWesley, Published:03/23/2007,ISBN10: 080532187X, ISBN13: 9780805321876Physics for Scientists and Engineers: A Strategic Approach with Modern Physics and Mastering Physics™, 2/E, Knight, ©2008, AddisonWesley, Published:10/09/2007, ISBN10: 0321513339, ISBN13: 9780321513335

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
1
30
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
1
25
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterm
Final Exam
1
45
Total

Weighting of Semester Activities on the Final Grade
55
Weighting of End-of-Semester Activities on the Final Grade
45
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
2
Study Hours Out of Class
16
2
32
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
1
12
Presentation / Jury
-
Project
Seminar / Workshop
Oral Exam
Midterms
10
Final Exams
1
20
    Total
128

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To be able to have a grasp of basic mathematics, applied mathematics or theories and applications of statistics.

X
2

To be able to use advanced theoretical and applied knowledge, interpret and evaluate data, define and analyze problems, develop solutions based on research and proofs by using acquired advanced knowledge and skills within the fields of mathematics or statistics.

X
3

To be able to apply mathematics or statistics in real life phenomena with interdisciplinary approach and discover their potentials.

X
4

To be able to evaluate the knowledge and skills acquired at an advanced level in the field with a critical approach and develop positive attitude towards lifelong learning.

X
5

To be able to share the ideas and solution proposals to problems on issues in the field with professionals, non-professionals.

X
6

To be able to take responsibility both as a team member or individual in order to solve unexpected complex problems faced within the implementations in the field, planning and managing activities towards the development of subordinates in the framework of a project.

7

To be able to use informatics and communication technologies with at least a minimum level of European Computer Driving License Advanced Level software knowledge.

8

To be able to act in accordance with social, scientific, cultural and ethical values on the stages of gathering, implementation and release of the results of data related to the field.

9

To be able to possess sufficient consciousness about the issues of universality of social rights, social justice, quality, cultural values and also environmental protection, worker's health and security.

10

To be able to connect concrete events and transfer solutions, collect data, analyze and interpret results using scientific methods and having a way of abstract thinking.

11

To be able to collect data in the areas of Mathematics or Statistics and communicate with colleagues in a foreign language.

12

To be able to speak a second foreign language at a medium level of fluency efficiently.

X
13

To be able to relate the knowledge accumulated throughout the human history to their field of expertise.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest